PREDICTIVE VOLATILITY MODELS ON JKSE AND FIVE STOCK INDEX FROM DEVELOPED COUNTRIES

Authors

DOI:

https://doi.org/10.29040/ijebar.v7i1.7347

Abstract

The global economy in 2021-2022 tends to slow down due to the Covid-19 pandemic, followed by the Russian invasion of Ukraine, which further weakens global economic conditions. This study aims to determine alternative predictive models for the JKSE and five developed country stock price indices (Singapore's FTSE, China's SSEC, Japan's Nikkei225, England's FTSE, and America's DowJones) during a time of slowing world economy (January 2021 – September 2022). The results of the study show that the JKSE shows lower volatility than the other five developed countries with a stock price index that tends to increase. The stock price indices for the five developed countries have high volatility and tend to decrease for China and Japan, while the stock price indices for Singapore, England and America tend to increase. An alternative predictive volatility model for JKSE stock returns is GARCH (1.1), Singapore's FTSE is ARCH (1), China's SSEC is ARCH (1), Japan's Nikkei 225 is GARCH (1.2) while the UK's FTSE100 and America's DowJones are EGARCH (1,1). These results indicate that FTSE and DowJones stock returns have a leverage effect where good news causes less volatility than bad news. When there is volatility in stock returns, especially FTSE100 and DowJones, business risk increases. This can cause stock investors to move their funds to countries with low investment risk

Author Biographies

Sri Nawatmi, Universitas Stikubank

Department of Finance and Banking

Agus Budi Santosa, Universitas Stikubank

Department of Management

Ali Maskur, Universitas Stikubank

Department of Finance and Banking

Bambang Sudiyatno, Universitas Stikubank

Department of Management

References

References

Agung, N., & Sri, N. (2017). Volatilitas di pasar saham dan pasar valuta. Forum Ekonomi dan Sosial ke-1 ISEI Cabang Semarang, 1.

Agung, P. R., & Fida, M. (2018). Penerapan model GARCH dalam peramalan volatilitas di Bursa Efek Indonesia. Jurnal Manajemen dan Bisnis Sri Wijaya, 15(3).

Akpan, E. A., & Moffat, I. U. (2017). Detection and modelling of asymetric GARCH effect in a discrete-time series. International Journal of Statistic and Probability, 6(6).

Ali, M., & Agung, N. (2009). Volatilitas harga saham antara saham konvensional dan saham syariah. Laporan Penelitian FEB Unisbank.

Ariefianto, M. D. (2012). Ekonometrika: esensi dan aplikasi dengan menggunakan eviews (pertama). Erlangga Jakarta.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307–327.

Enders, W. (2004). Applied Econometrics Time Series. John Wiley and Son.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimate of the variance of United Kingdom inflation. Econometrica, 50(4).

Everit, B. S., & Skrondal, A. (2011). The Cambridge Dictionary of Statistics (4th ed., Vol. 79). Wiley Online Library.

Huy, D. T. N., Bui, T. T. L., & Phan, T. A. (2020). Impact of selected factors on stock price: A case study of Vietcom bank in Vietnam. Entrepreneuship and Sustainability, 7(4).

Ika, W. (2007). Pemodelan efek asimetris dalam volatilitas dengan EGARCH. Skripsi Unibraw FMIPA.

Karanasos, M., & Kim, J. (2000). Movement of the ARMA-EGARCH model. University of York.

Kharisya, A. E. (2015). Determining the best ARCH/GARCH model and comparing JKSE with a stock index in developed countries. Journal of The Winners, 16(2), 71–84.

Muqorobin, M., & Ma'ruf, M. H. (2022). Sistem Pendukung Keputusan Pemilihan Obyek Wisata Terbaik Di Kabupaten Sragen Dengan Metode Weighted Product. Jurnal Tekinkom (Teknik Informasi dan Komputer), 5(2), 364-376.

Muqorobin, M., & Rais, N. A. R. (2022). Comparison of PHP programming language with codeigniter framework in project CRUD. International Journal of Computer and Information System (IJCIS), 3(3), 94-98.

Permatahati, I., & Muqorobin, M. (2022). Computer Sales Forecasting System Application Using Web-Based Single Moving Average Method. International Journal of Computer and Information System (IJCIS), 3(2), 56-63.

Muqorobin, M., Rais, N. A. R., & Efendi, T. F. (2021, December). Aplikasi E-Voting Pemilihan Ketua Bem Di Institut Teknologi Bisnis Aas Indonesia Berbasis Web. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 4, No. 1, pp. 309-320).

Rais, N. A. R., & Muqorobin, M. (2021). Analysis Of Kasir Applications In Sales Management Information Systems at ASRI Store. International Journal of Computer and Information System (IJCIS), 2(2), 40-44.

Fitriyadi, F., & Muqorobin, M. (2021). Prediction System for the Spread of Corona Virus in Central Java with K-Nearest Neighbor (KNN) Method. International Journal of Computer and Information System (IJCIS), 2(3), 80-85.

Muqorobin, M. (2021). Analysis Of Fee Accounting Information Systems Lecture At Itb Aas Indonesia In The Pandemic Time Of Covid-19. International Journal of Economics, Business and Accounting Research (IJEBAR), 5(3), 1994-2007.

Rais, N. A. R. (2021). Komparasi Aplikasi Daring dalam Pembelajaran Kuliah dimasa Pandemi Virus Corona. Jurnal Informatika, Komputer dan Bisnis (JIKOBIS), 1(01), 019-031.

Liu, L., En-Ze, W., & Chen-Chang, L. (2020). Impact of the Covid-19 pandemic on the crude oil and stock market the US: A time varying analysis. Energy Research Letters, 1(1), 71–84.

Mikhaylov, A. Y. (2018). Pricing in oil market and using probit model for analysis of stock market effect. International Journal of Energy Economics and Policy, 8(2), 67–73.

Najaf, R., & Najaf, K. (2016). A study of exchange rate movement and stock market volatility. International Journal of Research Granthaalayah, 4(1).

Nelson, D. B. (1991). Conditional Heteroscedasticity of Asset Returns A New Approach. Econometrica, 59, 347–370.

Ramelli, S., & Wagner, A. F. (2020). Feverish stock price reactionto Covid-19. The Review of Corporate Finance Studies, 9(3).

Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive—Moving Average of Unknown Order. Biometrika, 71, 599–607.

Sri, N. (2012). Volatilitas nilai tukar dan perdagangan internasional. Dinamika Akuntansi Keuangan Dan Perbankan, 1(1).

Suhartini. (2007). Peramalan Dengan Model ARCH.

Taylor, S. (1986). Modelling Financial Time Series. John Wiley and Son.

Thalassinos, E., Ugurhu, E., & Muratoglu, Y. (2015). Comparison of forecasting volatility in the Czech Republic Stock Market. Applied Economics and Finance.

Tsay, R. S. (2005). Analysis of Financial Time Series. John Wiley and Son.

Wu, G. (2001). The determinant of asymmetric volatility. The Reviews of Financial Studies, 14(3).

Yoseva, A. P., Komang, D., & Kartika, S. (2015). Penerapan model EGARCH pada estimasi volatilitas harga minyak kelapa sawit. E-Journal Matematika, 4(3).

Downloads

Published

2023-03-20

How to Cite

Nawatmi, S., Santosa, A. B., Maskur, A., & Sudiyatno, B. (2023). PREDICTIVE VOLATILITY MODELS ON JKSE AND FIVE STOCK INDEX FROM DEVELOPED COUNTRIES. International Journal of Economics, Business and Accounting Research (IJEBAR), 7(1), 129–141. https://doi.org/10.29040/ijebar.v7i1.7347

Citation Check